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The Variance of Information Loss as a 
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The cumulants of the information loss are discussed as characteristic measures 
of dynamical chaos. They are extensions of the Liapunov exponent and 
Kolmogorov entropy, which are given by mean values of the information loss. 
The most important cumulant of higher than first order is the variance. It is dis- 
cussed in particular for the logistic map. 
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1. VARIANCE AND OTHER CUMULANTS OF INFORMATION 
LOSS 

In the theory of chaos it is a central question to seek for quantities that 
characterize individual features of special types of  dynamical  chaos. Well- 
known quantities of this kind are the "invariant" or "natural"  measure, the 
Liapunov exponent  or  K o l m o g o r o v  entropy, and the correlation measures, 
described, for instance, in Ref. 1-14. Fur ther  characteristic quantities have 
been recently proposed  by Grassberger  and Procaccia.  (15 17) 

In the following a class of measures will be introduced that  are 
independent of  the already known measures and thus describe new charac- 
teristic properties of dynamical  chaos. 

Dynamical Map. For  a given dynamical  "map"  

x In+ ~)= f(x (')) (1.1) 

in a d-dimensional parameter  space 

x = (xl ,  x2,..., xd) (1.2) 
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the loss of information in one interaction step from n to n + 1, expressed by 
the number of bits multiplied by log 2, is 

AI (~) = log IA(x('))l (1.3) 

(compare, e.g., Ref. 2), where A is the Jacobian 

0f 
A ( x ) =  D e t - -  (1.4) 

0x 

The invariant measure (13) of a map f is 

N 1 

p ( x ) =  lira N -1 ~ 5 ( x - x  (')) (1.5) 
N ~  

n = 0  

It is a density in the d-dimensional x space. With it any mean value of a 
function a(x) over the mapping process 

N - 1  

( a } =  lim N i ~, a(x(.)) (1.6) 
N ~ c o  

n - - 0  

if the limit exists can be written as the space integral 

( a }  = f dx p(x) a(x) (1.7) 

Dynamical Flow.  A dynamical "flow" in the x space is given by a 
set of autonomic differential equations in time t: 

= F(,,) (1.8) 

It can be conceived as a map with infinitesimally small steps obtained by a 
limiting process T-+ 0 with 

(x (. + 1) _ x(.))/z ~ R (1.9) 

[f(x) x ] / r  ~ F(x) (1.10) 

IAI ~ 1 + z  div F (1.11) 

AI/r --* ]= div F (1.12) 

The invariant measure (1.5) goes over into 

fo p ( x ) =  lim T -1 d t 6 ( x - x ( t ) )  (1.13) 
T ~ o o  
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where x(t) is the solution of the differential equation (1.8) with given initial 
values x(0). Any mean value of a function a(x) over the process x(t) 

;o- ( a ) =  lira T -~ d ta(x( t ) )  (1.14) 
T ~ o o  

can be written as the space integral (1.7). 

In format ion  Loss Cumulan t s .  In case of a map the information 
loss during one iteration step is AI; in case of a flow the information loss 
per unit of time is ). In the following we shall denote both quantities 
uniformly by J and call them "information loss" or "simply loss." Thus, for 
the map, 

J = l o g  FA I (1.15) 

and for the flow, 

J = d i v  F (1.16) 

The cumulants C~ of the loss J are defined by the power expansion 
with respect to a parameter r/: 

log(exp(r/s)) = ~ Cktlk/k! (1.17) 
k = 0  

k is called the "order" of the cumulant Ck. These loss cumulants are 
independent of each other and characterize independent properties of the 
dynamics (map or flow) in the same way as moments of different order of a 
random quantity characterize independent properties of a probability dis- 
tribution. In particular, they can characterize dynamical chaos. Unlike the 
moments (J~),  the cumulants Ck have the distinguishing property of being 
additive for uncoupled dynamics occurring independently in separate sub- 
spaces of x, whereas the moments of order k > 1 mix the subspaces. It is 
easily seen that the left-hand side of Eq. (1.7), the "generating function" of 
the cumulants, already possesses this distinguishing property of the 
cumulants. This function is, up to a factor, equal to the R6nyi 
information, (18) which in connection with chaos has been discussed by 
Grassberger and Procaccia/15 17) 

The first cumulant of J is the mean value 

C1 = ( J )  (1.18) 

In the one-dimensional case d=  1 it is the Liapunov exponent 2 and is 
equal to the Kolmogorov entropy. ~11'19 25~ 
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The second cumulant is the variance of the information loss 

C2= V 2= < j 2 > _  ( j> 2  (1.19) 

It is a new characteristic quantity of chaos and generally of a map or flow, 
and shall be discussed in detail in the following. It is a measure for the 
inhomogeneity of the loss J in x space. It vanishes for a totally 
homogeneous loss J and becomes positive and larger the more the loss 
varies in space. 

We make the following remark. For  dimensionality d >  1 the 
Kolmogorov entropy is not defined by ( J> ,  but by the sum of all positive 
(J~>, where, in case of the map, 

0Ss 
J,  = log c~xs (1.20) 

and in case of the flow, 
0~ 

J" = ~ x ,  (1.21) 

(s = 1, 2 ..... d). (24/ Correspondingly, a loss variance could be introduced by 
an alternative definition, 

V 2 = ( J~ )  - (Js> 2 (1.22) 

for any direction x s in x space. The same could be done for the cumulants 
of Js in any order k. These definitions, however, then are dependent on the 
direction x,, unlike Ck of J. 

2. SENSIT IV ITY TO CORRELATIONS 

We call a map in a two-dimensional x space "disentangled" into two 
uncorrelated maps if f (x) has the special form 

f~ x2)= f~ i =  1, 2 (2.1) 

i.e., if it is a composition of two independent maps in different subspaces. 
The invariant measure (1.5) then factorizes with respect to the subspaces: 

p~ x2) = pl(Xl) p2(x2) (2.2) 

Now let us look for a map that differs only slightly from such a dis- 
entangled map, 

f ( x )  = f ~  + eg(x), lel < 1 (2.3) 



Characterization of Dynamical Chaos 139 

and has the same marginal measures 

PI(X1) = f dx2 p(XI, X2) (2.4) 

(, 
p2(x2) = J dx~ p(Xl, x2) 

In lowest order of e we can write 

~(x) = p~ + ~ ( x )  

with 

(2.5) 

(2.6) 

f dx (5 = J dx 2 o 
f. 

0 (2.7) 

To separate the influence of correlations upon the cumulants Ck of infor- 
mation loss J from the influence of any other property of a map, we look 
for the case that J is the same in both maps, at least in lowest order of e. 
This means that 

J (x l ,  x2) = ~ ( x l )  + ~ (x2)  (2.8) 

holds up to first order of e; then 

f dxx dx2 o(J)  k (2.9) 

vanishes for k = 1, but not generally for k > 1. Therefore, in the generating 
function of the cumulants 

= log f dxl dx2 (pO + eo-) e ~lJ (2,10) log(e  u J )  
0 

the cumulant C1 has no term that is linear in e, unlike the cumulants Ck of 
higher order, k > 1, 

This means that Ck for k > 1, and in particular the variance C2, are 
sensitive to correlations between the subspaces in a higher degree than C1, 
the mean value ( J )  of information loss. 

The proof is valid for any two subspaces xl ,  x2 of a higher dimen- 
sional x space and for dynamical flows as well. 

3. T H E  T R I A N G U L A R  M A P  

In the following we shall consider some special one-dimensional maps 
with real x: 

x(,  + l) = f(x(n~) (3.1) 

J(x)  = log I f ' (x ) l  (3.2) 
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where f '  denotes the derivative of f .  The mean value 
Liapunov exponent 

2 = ( log I/'1 ) 

We shall discuss the variance 

V2= (( log I f ' t )  2 ) - Z  2 

First we consider the "triangular map" 

y~n+ l ) =  g(y(,,)) 

f y c /a  for y e ( 0 ,  a) 

g(Y)=((1-y)c/a~ " for y ~ ( a ,  1) 

with 

P = dy p(y)  <~ 1 

where p is defined by Eq. (1.13); we obtain 

2 = l o g  c - P l o g  a -  ( 1 - P )  l o g ( 1 - a )  

V 2 = P(1 - P){log[(1 - a)/a] }2 

of J is here the 

(3.3) 

(3.4) 

(3.6) 

(3.7) 

(3.s) 

(3.9) 

(3.10) 

4. THE LOGISTIC M A P  

f ( x )  = rx(1 - x) 

x6(0 ,  1), r e  (0, 4) 

J(x)  = - l o g  r - log( 1 - 2x) 

For the particular value r = 4  the map becomes 

(4.1) 

(4.2) 

(4.3) 

distinguished by the 
property that the invariant measure p(x)  can be calculated analytically. (~3/ 
1"he same then is true for 2 and V. This is due to the well-known fact that 
this map is topologically conjugate to the triangular map with c =  1, 
a--  1/2. Both maps are connected by the transformation 

x = (sin ny/2) 2 (4.4) 

This leads for the logistic map to 

p ( x )  = 7~ -- 1 I - X ( 1  - -  X ) ]  - -1 /2  (4.5) 

f 
l /2  

2 = 2 dy log(4 cos y) = log 2 (4.6) 
o o 

f 
l / 2  

V 2 = 2  dy [ l og (4  cos  y ) ]  2 - 22 = rc2/12 (4.7) 
o0 

(The integrals are listed in Refs. 25-27.) 
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It is remarkable that V is different from the value zero of V for the 
conjugate triangular map, whereas 2, as pointed out by Shaw, (22) is the 
same for both maps. This again demonstrates that in general V describes a 
new property of a map that is independent of 2. 

Plots of the x values from numerical calculations in the whole interval 
(0, 4) of the parameter r has been given by several authors. (2'1~ 

Numerical calculations of the dependence of 2, V, and I2[/V on the 
parameter r were performed by D6rpelkus. (3~ The value of r was varied in 
steps of 0.0025. The map was iterated 105 times. The results are plotted in 
Fig. 1. The plots are interpolations between the calculated values. 

The interval (0, 4) of r is divided into two essentially different parts 
separated by a value ro~ = 3.5699456. (2) 

For  r < r ~  the system is nonchaotic. Asymptotically, it becomes 
periodic. For r > r o ~  it is chaotic. The chaos, however, shows different 
structures for different values r. It shows "windows ''(v) with periodic 
behavior. Inspection of the plots shows that )~ and V diverge 
simultaneously. Such divergences occur in particular at the windows. This 
can be understood better by first discussing the regime r < r~ .  

The Per iodic  R e g i m e  (0, r ~ ) .  Here there exists a sequence 1 < 
rl < r2 < ' "  < r~ of r values rn such that in an interval (rn, rn+ 1) the map 
asymptotically tends to a cycle of 2 n values xi through which the system 
runs with the period 2 n of i. (In the following we use a subscript on x to 
distinguish these "branches" of a cycle.) The rn are bifurcation points in the 
Feigenbaum diagram. At each r n a period doubling takes place. In (0, 1) 
only x = 0  is stable. In (1, rl), only 

x o = 1 - 1 / r  (4.8) 

is stable. The two "superstable" cycle branches xl ,  x2 in (rl, r2) are 
solutions of the algebraic equation 

x =  f ( x )  (4.9) 

which is of fourth order, but can be solved easily, since the additional two 
solutions 0, Xo are known: 

Xl,2=2 1(1 + r  1)___ ( 2 r ) - l E ( r _ 3 ) ( r +  1)]1/2 (4.10) 

Linear fluctuation analysis gives the values r I = 3 and 

r2 = 1 + 6 I/2 (4.11) 
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Fig. I. Plot of 2, V, and Q (from top to bottom) as a function of the parameter r for the 
logistic map. The plots are interpolations between values calculated for r varied in steps of 
0.0025. The map was iterated 100,000 times. The first four cusps of Q belonging to supercycles 
r = R, are marked by dots. 
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as stability limits of Xo and of Xl. 2. Generally such an analysis gives for any 
2~= m cycle the stability condition 

f i  [f ' (xi)[  ~ 1 (4.12) 
i = l  

Therefore, in any branching point r~+~ the Liapunov exponent 

2 = ~ J(xi) = ~ log I f ' ( x Y  (4.13) 
i i 

vanishes, whereas V remains finite. This is why it is more convenient to 
plot, not the ratio of V over P21, which is the usual measure for relative 
deviations of J from the average, but the reciprocal 

Q = I)~l/V (4.14) 

)o becomes - oo for the so-called "supercycles" (compare, e.g., Ref. 2) with 
value r = Rn, which have a cycle branch x = 1/2 with vanishing f '(x).  The 
following always holds: 

G < R < r n + l  (4.15) 

For a supercycle V becomes infinite as well. Yet the ratio Q remains finite. 
Nevertheless, Q becomes singular as a function of r in a peculiar way. For 
values r in the neighborhood of R n we can, for small I~1, write for the men- 
tioned particular branch 

x(r) = 1/2 + e/Rn (4.16) 

This means that the deviation of r from R,, is linearized in e. By restriction 
to the leading terms in ~ one finds with m = 2n: 

f ' (x)  = log led (4.17) 

2 = (log le] + S)/m (4.18) 

where S is the sum of J(xi) of the other branches i of the cycle in Rn. Each 
branch enters with the same weight 1/m into the mean values ( J )  and 
< d 2 > .  

Therefore we obtain 

<j2> = m<j>2 _ 2 S ( J >  (4.19) 

Q = ( m - 1 )  ~/2[l+Srn(rn-1)- '( log[gt)- ']  (4.20) 

This means that the ratio Q has a finite peak ending in ( m -  1)-1/2, but 
with a logarithmic cusp. 

822/46/1-2-10 
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For the 2-cycle in (r 1, r2) we find in particular 

( R 1 - 3 ) ( R 1  + 1 )=  1 , R 1 = 1 + 5 1 / 2  (4.21) 

which means that 2/R is the golden mean. 
For 2 --* oo the empirical scaling law of Feigenbaum ~ holds: 

(R n - R ~ )  6 n ~  1 (4.22) 

This gives for the cusp maxima of Q in the limit n ---, oo 

Q ~ 2 n/2 ~ (Rn - Roo )p/2 (4.23) 

/~ = log 2/log 6 (4.24) 

where ~ is the Feigenbaum constant. It should, however, be stressed that 
the cusp maxima of Q form a very peculiar subset in the set of all Q. 

In conclusion, we note that )~ vanishes at the bifurcation points r n 
where V remains finite, and that 2 and V diverge simultaneously at the 
points R,  where for one branch of a superstable cycle x = 1/2 and the loss 
becomes - o o .  The ratio Q then has a finite cusp. 

The Chaotic Regime (r~, 4). Here no statements in the same 
stringent way seem possible. Yet analogies to the periodic regime with 
respect to the divergences seem helpful. One observes that divergences of 2 
and V coincide in the chaotic regime as well. They can be seen in the 
periodic windows. As in the periodic regime, the ratio Q remains finite at 
these divergence points. The windows are connected with inverse bifur- 
cations. Also in the chaotic regime without windows one observes more or 
less distinct "branches" as lines of higher density of x points reached by the 
mapping iteration. If such a line passes the value x = 1/2, we can expect a 
peak of 2 and V because for this x value the information loss becomes 
- o o .  The ratio Q would be finite, but with a peak. 

The following is remarkable. If we disregard the peaks, there remains a 
more or less distinct "background" curve for 2, V, and Q, respectively. 
Whereas the background of 2 increases with r, expressing increasing chaos, 
the background of V, as a measure of the inhomogeneity of the loss flow, 
remains relatively unchanged in the whole chaotic regime. 

5. CONCLUSION 

Since the definition of the Liapunov exponent )~ and that of the 
Kolmogorov entropy are based on the mean value of the information loss 
of a dynamical map or flow, and the mean value can be interpreted as the 
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first cumulant, it seems useful to introduce loss cumulants of higher order 
as independent characterizations of chaos. It has been shown that the 
cumulants of higher order are more sensitive to correlations in the 
dynamics than is the mean value of loss. 

The most important of the higher cumulants is the second cumulant, 
the variance V 2 of the information loss. It has been considered in particular 
for the logistic map, the standard example of a nonlinear map. Numerical 
results for 2, V, and the ratio Q defined in Eq. (4.14) are given. Whereas 2 
and V can diverge for certain values of the map parameter r, Q remains 
finite. The fact that 2 and V diverge simultaneously indicates that the origin 
of the divergence might be the same in the chaotic as in the periodic 
regime. 
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